RL-TR-94-147
Final Technical Report

August 1994

ENHANCING THE ARCHITECTURAL
CHARACTERIZATION OF PARALLEL
PROTO
AD-A285 678
L

Syracuse University

Daniel J. Pease

DTIC

SELECTE
GCi 21 1994

APPROVED FOR PUBLIC RELEASE DISTRIBUTION UNLIMITED.

% 94-32744

Rome Laboratory
Air Force Materiel Commana
Griffiss Air Force Base, New York

RN




This report has been reviewed by the Rome Laboratory Public Affairs Office
(PA) and is releasable to the National Technical Information Service (NTIS). At
NTIS it will be releasable to the general public, including foreign natioms.

RL~TR-94-147 has been reviewed and is approved for publication.

APPROVED: ‘)Y)Lm ™m ?3mumcao~

MILISSA M. BENINCASA
Project Engineer

FOR THE COMMANDER: %/ W&

JOHN A. GRANIERO
Chief Scientist
Command, Control & Communications Directorate

If your address has changed or if you wish to be removed from the Rome Laboratory
mailing list, or if the addressee is no longer employed by your organization,

please notify RL ( C3CB ) Griffiss AFB NY 13441. This will assist us in maintaining
a current mailing list.

Do not return copiles of this report unless contractual obligations or notices on a
specific document require that it be returned.




REPORT DOCUMENTATION PAGE | W8 Ne 7040188

Pubiic reporting burden for this oclle aGe t hour per respones, chuding the time for reviewing Netructions, Seerching EuRting data sources,
MMM"MM”MNMNMdW Serdd corrvnents regarcing this burdien estimste or ary Other aspect of (s
colaction of \nfarnetion. inckxing suggestions for recucing this burden, to Washinggon Hesdguarters Services, DI for iré 10 s andReports, 1215 Jefferson
Davis Highway, Subs 1204, Afingion, VA 222024302, and to the Offios of Marsgermant snct Buciget, Peparwark Reduciion Project (0704-01 88), Washington, DC 20503
1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
August 1994 Final Oct 92 - Oct 93
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
ENHANCING THE ARCHITECTURF CHARACTERIZATION OF PARALLEL C - F30602-92-C-0062
PROTO PE - 63728F
6. AUTHOR(S) PR - 2527
TA - 03.
Daniel J. Pease WU - PA
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Syracuse University
Department of Electrical and Computer Engineering
Center for Science and Technology

Syracuse NY 13244 N/A

9. SPONSORING/MONITORING AGENCY NAME (S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
Rome Laboratory (C3CB) AGENCY REPORT NUMBER
525 Brooks Road
Griffiss AFB NY 13441-4505 RL-TR-94-147

11. SUPPLEMENTARY NOTES

Rome Laboratory Project Engineer: Milissa M. Benincasa/C3CB/(315) 330-7650

12a. DISTRIBUTION.AVALABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (Matmaum 200 words)

The objective of the work presented in this report was to determine the feasability
of integrating the architectural database of the Parallel Assessment Window System
(PAWS) into the database of the Parallel Proto (PPROTO) tool. PAWS and PPROTO

are Rome Laboratory developed tools. The PAWS tool is an experimental system for
performing machine evaluation and comparisons. The tool provides the user with the
ability to predict the performance of an application on a number of selected
parallel architectures. PPROTO is a software engineering environment that allows a
user to validate and analyze the requirements of parallel and distributed systems
using rapid prototyping techniques. The benefit of being able to integrate the
PAWS database into the PPROTO database is that high level performance prediction
can be performed at the requirements phase of the software engineering lifecycle.
This would provide users the capability of determining which parallel architecture
would be most suitable for their particular problem domain.

14, SUBJECT TERMS 15 %R OF PAGES

Performance assessment, Parallel processing, Softwarg tools, +8 PAICE GODE
Software engineering, High performance computers

17. SECURITY CLASSFICATION 18. SECURITY CLASSIFICATION 119, SECURITY CLASSIFICATION (20. LIMITATION OF ABSTRACT
Of REPORT OF THIS PAGE Of ABSTRACT

Prescribed by AN3! Sict 239 18
298102

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL
NSN 7540-01-280-9800 Stanaara Form (98 (Pev 2 ac



for Rome Laboratory Project:
Enhancing the Architectural Characterization of Parallel Proto
1.0 Executive Si rary

Short-term and long-term technical tasks were defined for the project. The
short-term tasks and long-term tasks have been completed on schedule. o

®
Final Report .

®

®

The capabilities of the Parallel Proto (PPROTO) tool have been studied by the

Syracuse University (SU) Team and are well understood. Data elements from

the Parallel Assessment Window System (PAWS) tool data base have been

identified for usage in characterizing the MultiMax and the Touchstone parallel °
architectures within the existing capabilities of PPROTO. This characterization

is restricted by the limitations of the present version of PPROTO.

The creation of data members for PPROTO architectural characterization can be

automated, but cannot be linked to the simulation and visualization. Several

recommendations have been developed that can allow more accurate e
representations of parallel architectures in PPROTO.

In this effort an attempt was made to establish an interface between the

architectural data base of PAWS and PPROTO. The objective of this work was

to enhance the architectural characterization of PPROTO. Due to the present

form of PPROTO the automated interface could not be developed. o O

The Syracuse University Team was led by Dr. Daniel Pease, the Principal

Investigator. Mr. Mikki was responsible for Visualization aspects of the

architectural characterization, Mr. Foudil-Bey was responsible for the interface

with PPROTO, and Mr. Zerrouki was responsible for the interface to the PAWS ®
Architectural Data Base.

The following tasks have been completed under this effort:

1. Design, test and refinement of the Architectural Visualization Interface to
PPROTO. o

2. Design, test and refinement of the Interface to PPROTO.

3. Design, test and revise refinement to PAWS architectural data base.

There are three additional sections to this report: i
- Task Status,
- Technical Results, and
- Summary of Specific Recommendations
o

May 1993 1 Syracuse University, ECE Department




2.0 Task Status

1. Study the existing Architectural Visualization in PPROTO and propose
an interface to Architectural Data from PAWS.

Schedule: Start by: May 27, 1992
Complete by: September 27, 1992
Status: Completed: September 27, 1992
2. Design and implement an Architectural Visualization Interface to
PPROTO.
Schedule: Start by: September 27, 1992
Complete by: March 27, 1993
Status: Completed: March 27, 1993

3. Test and refine the Architectural Visualization Interface to PPROTO.

Schedule: Start by: March 27, 1993
Complete by: May 27, 1993
Status: Completed: May 27, 1993

Parallel Proto Interface

1. Study the existing Architectural Interface in PPROTO and propose an
interface to Architectural Data from PAWS.

Schedule: Start by: May 27, 1992
Complete by: September 27, 1992
Status: Completed: September 27, 1992

2. Design and implement an Interface to PPROTO.

Schedule: Stari by: September 27, 1992
Complete by: March 27, 1993
Status: Completed: March 27, 1993

3. Test and refine the Interface to PPROTO.

Schedule: Start by: March 27, 1993
Complete by: May 27, 1993
Status: Completed: May 27, 1993

May 1993 2 Syracuse University, ECE Department

@ci.@@j




2.0 Task Status (Continued)
PAWS Interface Refinement

1. Study the existing Architectural Interface to PAWS.

Schedule: Start by: May 27, 1992
Complete by: September 27, 1992
Status: Completed: September 27, 1992
2. Design a refinement to PAWS architectural data base so it can be
Interfaced to PPROTO.
Schedule: Start by: September 27, 1992
Complete by: March 27, 1993
Status: Completed: March 27, 1993

3. Test and revise refinement to PAWS architectural data base.

Schedule: Start by: March 27, 1993
Compiete by: May 27, 1993
Status: Completed: May 27, 1993

Accesion For \
NTIS CRA&! ﬂ
TG TAB 3
U,z .mouted i}

Jusufication

BY o]
Distribution/

Availability Coages

Avail andor
Dist Special

A-)

May 1993 3 Syracuse University, ECE Department



e T‘in

L
®
3.0 Technical Resuits and Recommendations .
There are three fundamental technicai tasks that have been completed under ®
this effort. Specifically: °
1. Design, test and refinement of the Architectural Visualization Interface to 0
PPROTO. v
2. Design, test and refinement of the Interface to PPROTO.
L
3. Design, test and revise refinement to PAWS architectural data base.
The results of each of these tasks are a set of recommendations for further
modifications to PPROTO and PAWS.
L
@
° [
J
[
o
)
v
May 1993 4 Syracuse University, ECE Department
N




3.1 Design, Test and Refine the Architectural Visualization
interface to PPROTO.

Architectural Visualization is one of the key components of PPROTO . In
PPROTO, a parallel computer system is defined by drawing a graphical picture
of the architecture. This first task consisted of several parts aimed at
determining if a new architecture could be added to PPROTO without manual
intervention. Currently, in PPROTO, the user has to draw the architecture and
define its high level characteristics manually. In order to automate this process
the following steps were taken:

1. Manually Use PAWS Architectural Data to Create Two PPROTO
Architectural Visualizations

2. Analyze User Interface to PPROTO Architectural Visualization

3. Design an automated interface that would take PAWS Architectural
Characterization data and create a PPROTO Visualization

It was felt at the onset of this effort that the third step was not possible due to the
design structure of the PPROTO tool.

3.1.1 Manually Use PAWS Architectural Data to Create Two
PPROTO Architectural Visualizations

In order to understand Architectural Visualization in PPROTO, two real-worid
parallel architectures were developed for PPROTO using the PAWS
architectural data. The Intel Touchstone Hypercube and the MultiMax 320A
MIMD parallel architectures were utilized. Once the parallel architectures had
been determined a set of queries were defined that allowed accessibility to the
detailed architectural data base information in PAWS. These queries included
the following specific requests for information that are presently entered
manually into the PPROTO Architectural Characterization:

Using a distribution for different types of mathematical operations to get a
single time needed for PPROTO. For example, the PPROTO add time
was determined from the sum of 50% of the integer add time, 30% of the
floating point add time, 10% of the long integer add time, and 10% of the
double precision add time.

The number of Processors, number of memories and the number of
interconnection paths between processors/memories.

Using a distribution tor different types of memory access and interconnect
communication operations to get a single time needed for PPROTO. For
example, the PPROTO interconnect access time was determined from the
sum of the cache access time, 10% of the coherency evaluation time,
10% of the main memory access time, 1% of the secondary storage
access time, and 1% of the paging time.

May 1993 5 Syracuse University, ECE Department




Once this information was obtained it was then used to manually draw the two
parallel architectures in PPROTO. These were completed and delivered to
Rome Laboratory (RL) in the five month report. An example of the hypercube
parallel architecture entered into PPROTO is shown in Figure 1.

1 r H T

Memory Memory

Processor< Processo Memory| Memory

Memory

Processo Processo

\ |
l_‘
-«
Processo Processo
7

Memory

Processon<

'Y
> Grocesss)

[ h<
Memory Processo Processo

“\

Processo

Memory

M Processo

Memory

g Y

Processoll« Processo
— E
K*..h
Process Processo

Figure 1 - An Example of a 16 Processor Touchstone Drawn in PPROTO

3.1.2 Analyze User Interface to Architectural Visualization

An architecture, or parallel computer system is input into PPROTO manually by
graphically constructing the system with the elements provided by PPROTO
Architecture tool.

May 1993 6 Syracuse University, ECE Department




PPROTO provides a 'flat’ two-dimensional view of systems. PPROTO provides
the following elements with which to create an architecture:

a simple processor,

an interconnection bus,

a processor to bus connection,

a memory to bus connection, and
a memory block.

The user creates the element by selecting from the menu of five pieces defined
above. Once an option has been selected the new element is displayed and is
automatically named by PPROTO with an internal name. This internal name is
used by PPROTO to uniquely identify each element in the architecture. All of
the architectural information is stored in the ONTOS data base by PPROTO.
The user can move elements around to make the architecture visually
understandable. However as the number of elements gets large this is difficult
in a two dimensional environment.

The architecture is then characterized by a table of execution times of the
fundamental processor operations and a memory access delay. There are 33
data elements included in PPROTO. They include the following:

QPERATION TIMES

Add/Subtract - The time it takes a processor to add/subtract two values
that are stored in registers in the processor,

Multiply - The time it takes a processor to multiply two values that are
stored in registers in the processor,

Divide - The time it takes a processor to divide two values that are stored
in registers in the processor,

Boolean Operations (including Compare) - The time it takes a processor
to logically relate two values that are stored in registers in the processor.

Complex Operations - The time it takes a processor to perform a
complex operation on a set ~f values that are stored in registers in the
processor, (for example, a value raised to a power).

ACCESS TIMES

Bus Access Time - The time it takes to get a data value into a register
from memory. This is treated as a delay time which PPROTO adds to the
processing time.

May 1993 7 Syracuse University, ECE Department




The above values must be set by the user or a unit default time is used. The
unit default time is a single unit of the smallest time increment being used o
characterize an architecture in PPROTO. PPROTO does not use absolute time,
only relative time is used with regard to unit time. For example, if the smallest
operation time in the architecture is 10 nanoseconds for an add, the unit time
would be assumed to be 10 nanoseconds. To enter the multiply time of 30
nano seconds requires the user to enter a time of 3 (3 times the unit time). Itis
up to the user to determine the unit time, and to convert all of the operation
times for the architecture into times relative to the unit time. [f the user does not
know a time the default unit tim« is used. This is not good measure since the
unit time refers to the fastes! time. These values are presently entered manually
from the PPROTO scree~ AFTER the element has been drawn. It is important to
note the relationship between these parameters and the ability of PPROTO to
characterize an architecture. If the user does not know the time for an operation
such as exponentiation (which is a complex activity many times longer than
something «ke addition) the time that PPROTO will use will be the unit time.
This is not realistic since it makes the architecture look as though it is much
faster than it actually is. The following values have to be provided for an
architecture:

Architecture PPROTO \'alues
Processor Operation Times (Fixed Integer)
Interconnect Bus Access Time (Fixed Integer)
Memory Nothing (Imbedded in Access)

Each of these elements is stored in the ONTOS data base that is created for
each architecture. The ONTOS data base is a third party product that the
developers of PPROTO are using to manage the large amounts of data that
make up PPROTO. The ONTOS data base is a relational data base that allows
data and the relationships between data to be stored and accessed without the
PPROTO developers having to actually manage the physical storage and
organization of the data. The ONTOS data base is accessed by a collection of
callable functions which perform different storage and retrieval functions. The
characteristics of the data base are:

1. The Operation Time is stored as a link list.
2. The Bus Access Time is stored as a separate entity in data base structure.
3. The remainder of the data base elements are derived values generated
internally by PPROTO. These include an extensive set of coordinates
and characteristics of each architectural element.
The user interface provides no mechanism for linking a part of an existing

architecture and its associated data set with a new architecture, (i.e. no Cut and
Paste across architectures.)

May 1993 8 Syracuse University, ECE Department

.
l
|
ﬂ

.




3.1.3 Design an Automated Interface that takes PAWS Architectural
Characterization Data and Creates a PPROTO Visualization

This task consisted of three parts which attempted to interface the PAWS
Architecture Characterization Data Base with PPROTO. The task included the
following steps:

1. Create a Query to the PAWS Architecture Characterization data base to
provide a set of data compatible with PPROTO.

2. Automatically create an architecture in PPROTO that is based on data
returned by querying the PAWS Architecture Characterization data base.

3. Automatically modify an existing architecture in PPROTO that has been
stored in the ONTOS data base, by inserting the data returned from
querying the PAWS Architecture Characterization Data Base .

A query of the PAWS Architecture Characterization data base was successfully
completed. This query did not take advantage of the plethora of information
currently available in the PAWS Architecture Characterization Data Base. For
example, in order to obtain the add time, for input into PPROTO, the integer add
time, the floating point add time, the long integer add time, and the double
precision add time were accessed.

The internal PPROTO data that is stored in the ONTOS Data Base could not be
externally generated. This task was unsuccessful because the data that had
been extracted from the PAWS Architecture Characterization data base could
not be utilized directly by the user interface in PPROTO. The user interface in
PPROTO provides the capability of drawing the architecture. An attempt was
made to create a file that contained all of the data as a script in the correct order,
so that it could be manually input to PPROTO, but it was not possible to activate
the script will PPROTO was running.

The next approach tried to directly insert the data into the ONTOS data base.

This was done by over-writing a set of data that had been created manually with

PPROTO. This worked successfully for small architectures of less then 20 total

gements. but for larger architectures there were linkage pointer problems with
NTOS.

It an architecture could have been created automatically in PPROTO the
following steps would have been required:

1. Extract the data required to characterize the architecture in PPROTO from
the PAWS Architecture Characterization Data Base.

2. From the data set extracted, create a new architectural data base in
ONTOS for PPROTO, inserting the data from PAWS.

3. From the extracted data create a visualization of the new architecture.

May 1993 9 Syracuse University, ECE Department

"/




A file containing the external information needed to create the architecture in
PPROTO was successfully accomplished, but steps 2 and 3 above could not be
accomplished without major code revisions to PPROTO. The interface to the
architectural drawing part ot PPROTO could be modified to a'iow the user to use
a script which would contain the definition of each element in the architecture,
the elements position on the screen, and the data needed to characterize the
element.

Anuther possible modification would invoive PPROTO performing an overwrite
on an existing architecture containing data that is currently stored in the ONTOS
data base. PPROTO would read from a file rather than deriving the architecture
from the screen drawing program. PPROTO would have complete contro! of the
data and the ONTOS data base to ensure integrity and correct operation.

3.1.3.1 PAWS Data Extraction

The query interface to the PAWS architectural data base was used with a small
modification to extract the data needed to create an architecture within
PPROTO. The modification made to the PAWS architectural data base required
a way to detect the number of processors, memories and interconnects
associated with an architecture and establish a screen position for them. This
had not been an original requirement of the PAWS architectural data base. The
specific data required included:

Architecture Naming Information - A unique name for the system being
modeled, such as Touchstone 16 for a 16 processor Touchstone hypercube
architecture.

Operation Times - The time required to do adds, multiplies and other
processor operations.

Access Time - The time required to access data from memory and bring it to
the processor.

Netlist of Processor, Interconnect, and Memory Connections - The
interconnections that exist between each piece of the architecture. these are
pair-wise point-to-point connections.

Number of Processors - The number of processor blocks.

Number of Interconnects - The number of bus blocks.

Number of Memories - The number of memory blocks.

The operation times and access time were average values computed from more
detailed PAWS data.

The netlist was a modification to the query interface of the PAWS architectural
data base. This was accomplished by creating a processor to interconnect list

May 1993 10 Syracuse University, ECE Department

¥

o &

S




PO Y

and an interconnect to memory list. These were then combined into the netlist
that was required for PPROTO.

3.1.3.2 Create Externally an Architecture in PPROTO

The process PPROTO uses to create the architecture data base in ONTOS was
traced. The most of the ONTOS calls that were made could be identified but
some of the internal PPROTO parameters that were passed in the calls could
not. Attempts to use the same variable names were unsuccessful.

3.1.3.3 Create Externally an Architecture Graph

in PPROTO, the architecture graphs are described by a special graphical
language called Swordfish. Swordfish is a special language created by the
developers of PPROTO to simplify the generation of graphics in the X-Windows
environment. Swordfish has a set of graphical functions which have simple
calls and parameter sets which produce complete X-Window graphical figures.
Swordfish is used in PPROTO for all of the visual/graphical drawings that make
up the user interface in PPROTO. The Swordfish operations could not be
accessed properly, due to undefined local parameters and unknown Swordfish
function calls. Swordfish is good for internal development, but it excludes
needed support for external construction of graphs.

: Create the visual graph of the architecture manually,
then have PPROTO generate all the data it needs to create an architecture.
Next, create a file that contains values for each element in the set of data that
PPROTO created, then the user can modify the fiie with all of the data needed to
correctly specify the architecture. The file is then returned to PPROTO, and then
PPROTO will load it into the ONTOS data base, thus giving the graph the
parameters needed to represent the architecture.

May 1993 11 Syracuse University, ECE Department

®l

®



3.2 Design, Test and Refine the Interface to PPROTO.

The first task completed was an in depth study of how PPROTO stores and
architecture.

Parallel Proto Architecture Study

Architectural

Model
Simulation Performance
Estimate
v ',"
. "
Application Optional?ZAd  Results
Specification \\\\\\\\\\\\\\\\\\\\ ™ DiSp'ﬂY

Figure 1 - Present Parallel Proto System
As shown in Figure 1, there are three primary parts to PPROTO design:

Architectural Model - A simple model indicating the relationship between

processors and primary memoty in the computer system being targeted
for execution.

Application Specification - A graphically based logical model of the software
including all of the major portions of the functional specification . These
are primarily data flow diagrams. A major part of this is an object-
oriented data base of all primary data structures in the software.

Simulation - The structure of the data flow which represents how the
application software specification is mapped to the architectural model
and how the execution time is analyzed. The execution simulation is
targeted to the parallel system specified, so paraliel mapping is done.

An attempt was made to add a new interface to PPROTO as shown in Figure 2.
This interface attempted to incorporate the PAWS architectural data base into

PPROTO.
14
May 1993 12 Syracuse University, ECE Department
@
- -~ et sl it s M W W el i o v v - A




New Interface to Parallel Proto

Architectural L
Characterization [—»{ Architectural

(from PAWS) Mod*el
Simulation }—9 PeEr;:;nr:aaatr;ce
v,
I,,,'/
Application Optional%2}  Resuits
Speciﬁcation \\\\\\\\\\\\\\\\\\\\ N Display
igur - rallel Pr v

Four sub tasks were defined to do this. Together these sub tasks evaluated
whether PPROTO could be made more usable for Rome Laboratory. The sub tasks
were:

1. Evaluate whether data of increased detail like that in the PAWS data base
could be utilized in the PPROTO simulations.

2. |dentify how an architecture model is stored in PPROTO.

3. Interface the PAWS architecturai data base to PPROTO.

4. Test the new architectural characterization with a test application.
PAWS takes a low level approach to architecture characterization. Data has
been accumulated on architecture parameters which potentially can affect
performance in a parallel system. This accumulated data was incorporated into
a data base where it is accessible by a user and can be utilized by the other
tools in the PAWS system.

3.2.1. Evaluate whether Data of Increased Detail like that in the
PAWS Data Base can be used in the PPROTO Simulations

it was determined that the following data was required in order to create an
architecture in PPROTO:

Architecture naming information,
Operation times,

Access time,

May 1993 13 Syracuse University, ECE Department

. ]
«ah: &

*




®

Netlist of processor, interconnect, and memory connections, .
Number and location of processors, ®
Number and location of interconnects, and
Number and location of memories.

Locations of processors, interconnects, and memories, netlist, and some of the

times had to be derived by utilizing an algorithm on the PAWS data. The netlist o

was a modification to the query interface of the PAWS architectural data base.

This was accomplished by creating a processor to interconnect list and an

interconnect to memory list. These were then combined into the netlist that was

required for PPROTO. The remaining values could be extracted directly from
PAWS.

The following parameters available in the PAWS data base are the most
significant ones that could not be utilized in the PPROTO Architecture
Characterization:

Execution Time Variations by Data Type (including integer, float, long and ®
double precision values had to be combined into a single value)

Hierarchical Memory information -
- Cache information (Line Size, Replacement Policy, Size, Speed,...)

- Main Memory information (Page Size, Replacement Policy, Size,
Speed, Coherency Management,...)

- Extended Memory information (Storage Unit, Swap Policy,
Replacement Policy, Size, Speed, Coherency Management,...) )

- Secondary Storage information (Storage Unit, Swap Policy, Size,
Speed, Latency,...)

- Memory Management Hardware

Register information - (Integer registers, Vector registers, Pointer
Registers,...)

Operating System Penalties (including synchronization penalty, system
function execution times, ...)

Variations in Communication Path Rates (based on path length, contention,
traffic density, differences between different hierarchical levels, ...)

Interconnect Routing Policies (including time for blocking resolution,
broadcast costs, actual configuration and switching times, ...) ®

May 1993 14 Syracuse University, ECE Department




Recommendation #2: Each data item should be considered by PPROTO
designers to determine if it can be used within the framework of performance
analysis within PPROTO. It is particularly important that the addition of a
hierarchical memory model be made. Most of the existing paraliel systems
have a hierarchical memory system. The communication and memory access
costs are the most significant part of the penalty in expected paraliel
performance. The performance of the memory system has been shown to be
50% - 80% of the total time of execution in parallel systems.

3.2.2. Identify How the Architecture Model is Stored in PPROTO

PPROTO characterizes an architecture using the following parameters (these

were previously defined in PAWS Data Extraction paragraph in Section 3.1.3):

Architectural Identifiers,

Number and locations of Processors,

Number and locations of Interconnects,

Number and locations of Memories,

Processor Operation Times,

Interconnect Bus Access Delay, and

Arcs that connect memories, interconnects and processors.

Each of these elements is stored in the ONTOS data base that is created for
each architecture. The characteristics of the data base are:

1. All numerical data is stored as integers.

2. Operation Times are stored as a link list.

3. Bus Access Time is stored as a separate entity in the data base structure.

4. There are data base elements that are locally derived values generated
internally by PPROTO.

5. Locations are absolute Swordfish graph coordinates.

May 1993 15 Syracuse University, ECE Department

o@: @



Recommendation #3: How the PPROTO data base is designed should be
left up to the developers of PPROTO. PPROTO developers because of some of
the limitations of ONTOS might want to consider other data base managers that
have more streamiined interfaces. This effort did not consider or evaluate other
data bases, but it was felt that there is a great deal of overhead associated with
the ONTOS data base. But as long as PPROTO establishes an external data
base interface, it should maintain internal control over the data base structure
and operation.

3.2.3. Interface the PAWS Architectural Data Base to PPROTO

The goal of this task was to take the extracted PAWS data needed to
characterize an architecture and insert it into an existing PPROTO architecture.
This was accomplished for small architectures, architectures with less than 20
elements. But for large architectures over 20 elements (this included
processors, interconnects, and memories) this technigque failed.

The approach used to accomplish this task included the following steps:

1. Trace the PPROTO code that was used to edit the values that characterize
the processor operation times and the access delay.

2. Isolate this code and remove all the user interactions, except those
needed to identify the architecture.

3. Open the file of extracted PAWS data and insert each element as though it
were an edit done manually by the user.

4. When all the data is inserted save the architecture and end the edit
session.

The code could be executed externally from PPROTO, but it could not be
activated from within the architecture structure of PPROTO Attempts at trying
this method did not produce an error code message from the ONTOS data
base, but several attempts corrupted the data base.

Recommendation #4: How the PPROTO data base is designed should be
left up to the developers of PPROTO. PPROTO should provide a data list of
each architecture after its structure is initially entered. This list should be
generated by PPROTO and contain exactly what is needed to properly set up
the architectural data that is needed internally. By having PPROTO generate
the list it guarantees that the correct data in the correct format will be used. The
user can take this list and edit it to insert the data required and return it to
PPROTO. PPROTO can then take the data and insert it into the ONTOS data
base. This guarantees data integrity and the proper management of the internal
structure of the architectural information for PPROTO. It also guarantees that the
ONTOS data base is correct.

May 1993 16 Syracuse University, ECE Department

S

o@e @

&



— W

3.2.4. Test the New Architectural Characterization with a Test
Application

Four test cases were attempted:

Test Case 1 - Eight Processor MultiMax

l'est Case 2 - Eight Processor Hypercube

Test Case 3 - Twenty Processor MultiMax

Test Case 4 - Thirty-Two Processor Hypercube

The following steps were processed for each test:
Step 1 - Create the architecture manually in PPROTO.

Step 2 - Extract the data from the PAWS architecture data base as
previously describe in PAWS Data Extraction paragraph in section
3.1.3. This data contained the parameters needed by PPROTO for
the selected architecture.

Step 3 - Insert the extracted PAWS data into the PPROTO architecture by
copying it element by element into the data structure.

In all four cases the creation of the architecture, extraction of PAWS data and
insertion ran to completion. In test cases 1 and 2, for small architectures, the
resultant PPROTO architecture was usable and contained reasonable data. For
test cases three and four, for large architectures, the PPROTO architectures that
were created would not execute and PPROTO failed. The error message was
traced to a pointer error in the PPROTO Data Base.

May 1993 17 Syracuse University, ECE Department

¢ oo @



3.3 Design, Test and Revise Refinements to PAWS Architecturai
Data Base

In order to use the PAWS data two special operations had to be performed
while the data was being extracted. These operations are:

1. Scaling - PPROTO requires that all architecture values must be integers.
The integer values are multiples of the smallest unit of time for an
operation being modeled within PPROTO. The user has to determine
this by calculating the operation times for all architecture values, finding
the smallest and then scaling every one of the operations to the smailest
value.

2. Value Derivation - Parameters that did not exist explicitly in the PAWS
architectural data base, had to be calculated.

Scaling was actually done after extraction and derivation. The resultant values
were stored in a file for later use in PPROTO.

Scaling
All the values were searched and a minimum scale unit was determined that
could reasonably be divided into all of the extracted and derived values. This

minimum scale unit value was then used to conven all of the values into
integers within the range allowed by PPROTO.

Val rivation

Four sets of values had to be derived from PAWS data since they were not
directly available as parameters in the PAWS architectural data base. These
values included:

1. Some operation times were average values were computed from more
detailed PAWS data.

2. The access time was an average value computed from more detailed
PAWS data.

3. The netlist was a modification to the query interface of the PAWS
architectural data base.

4. The graphical locations of processors, interconnects and memories.

A set of simple algebraic relations were developed for each of these sets of
values that used available data. These relations have been defined in PAWS

Data Extraction paragraph in Section 3.1.3 and in the other parts of this section.

May 1993 18 Syracuse University, ECE Department

y - PN y MBcsisini o T TR VNN USSR O mm—— —" -




o
®
seatan tines o
It was assumed that all operations used register data and that the mix of types ®
were 50% integer times, 30% floating point times, 10% long integer times, and ®
10% double precision times.
. @
Access Time
No secondary memory penalties were included, and no cache speedups were
allowed. Main memory acress time was defined as an integer. L
Netlist
This was accomplished by creating a processor to interconnect list and an
interconnect to memory list. The two lists were then combined into the netlist
that was required for PPROTO. ®
o
L @
L
®
L
L J
v
May 1993 19 Syracuse University, ECE Department
. ®




Three Level Graph Positioning Example

r \
Processor Processor Processor Processor
InterConnect interConnect
Memory Memory Memory Memory Memory
\_ ,
Three Level Graph Positioning with Stagger
( )
Processor Processor Processor Processor
InterConnect InterConnect
Memory Memory Memory
Memory Memory Memory
\. _J
Location

A three level grid was established that distributed processors evenly over the
top level, interconnects evenly over the middle level, and memories evenly over
the bottom level. If there was not enough room a staggered two level
arrangement was used for each level of elements. This is shown above.

Becommendation #5: Additional modifications need to be made to the query
Interface of the architectural data base in PAWS. The specifics of these
modifications cannot be defined until the PPROTO designers decide on an
enhanced data set for architectural characterization. They may consider
redesigning their architectural system to have a general external interface so
that any new systems can be brought in, not just PAWS data.

May 1993 20 Syracuse University, ECE Department




®
®© @

4.0 Summary

PPROTO capabilities have been studied and are well understood by the SU
Team. Data elements from the PAWS architectural data base have been
identified that can be used to define the characterization of the MultiMax and the
Touchstone parallel architectures within the existing capabilities of PPROTO.
This characterization is restricted by the limitations of the present version of
PPROTO. The creation of data members for the PPROTO architectural
characterization can be automated, but they cannot be linked to the simulation
and visualization.

An attempt to establish an interface between the architectural data base of
PAWS and PPROTO was completed. The objective of this work was to enhance
the architectural characterization of PPROTO. An automated interface is not
possible with the present form of PPROTO.

The following tasks were completed in this effort:
1. Design, test and refine the Architectural Visualization Interface to PPROTO.
2. Design, test and refine the Interface to PPROTO.
3. Design, test and revise refinement to PAWS architectural data base.

Several specific recommendations have been presented that can be utilized in
order to allow PPROTO to more accurately represent parallel architectures. A
discussion of the impact on PPROTO for each specific recommendation has
been included. These specific recommendations and the impact on PPROTO
are presented below in their order of importance:

- Provide the capability in PPROTO to use floating point values for
architectural data. This solves the scaling problem and gives more
meaning to the results generated by PPROTO.

Impact on PPROTO: This is a minor programming change and a
revision in output display. However, it is a major impact on the execution
of their simulation. If it in fact is used to include actual timing information
the result will be more meaningful because PPROTO will more closely
approximate real time. It is important to recognize that this will move
PPROTO toward becoming a timing performance predictor which is much
more controversial than its present form.

May 1993 21 Syracuse University, ECE Department

@




°

- Provide the capability in PPROTO to model hierarchical memories.
Memory and communication penalties are very critical to parallel system
performance and should be modeled more accurately in PPROTO.

Impact on PPROTO: This will require a major programming effort and
is a significant change in the modeling of an architecture within the
PPROTO performance estimation software. Contention analysis has to
be added which is a major undertaking. The accuracy of the resuiltant
system will be a significant improvement. over present PPROTO
predictions.

- Provide the capability in PPROTO to import architectural data from disk.
This will allow new systems to be easily entered and will provide more
accurate data for architectural characterization.

impact on PPROTO: This should actually be a minor programming
activity that would allow more rapid addition of architectures. It also
would make it easier for companies and customers to enter architectures.

- Provide the capability in PPROTO to identify the data elements it needs in
order to specify an architecture. This will keep the actual management of
the PPROTO architectural characterization within PPROTO control.

Impact on PPROTO: This is a medium level programming activity that
requires standardization of the interface to the architectural
characterization portion of PPROTO. It constrains the architectural
description, but also insures that it is complete rather than using hidden
defaults that can be incorrect as is presently done.

- Suggest that the PPROTO developers consider using a different data base
system from ONTOS. One that has less hidden parameters. This should
make the inclusion of large architectures easier for the PPROTO
developers.

Impact on PPROTO: This could require a complete reprogramming of
PPROTO. It should only be done if the designers of PPROTO can
determine that a different data base system would be significantly better.
No recommendations can be given presently as to what a suitable data
base may be.

#.8. GOVERNMENT PRINTING OFFICE: 1994-510-117-592030

May 1993 22 Syracuse University, ECE Department

@

@




MISSION ]
OF
ROME LABORATORY

Mission. The mission of Rome Laboratory is to advance the science and I‘
technologies of command, control, communications and intelligence and to
transition them into systems to meet customer needs. To achieve this,
Rome Lab:

a. Conducts vigorous research, development and test programs in all
applicable technologies;

b. Transitions technology to current and future systems to improve
operational capability, readiness, and supportability;

c. Provides a full range of technical support to Air Force Materiel
Command product centers and other Air Force organizations;

d. Promotes transfer of technology to the private sector;

e. Maintains leading edge technological expertise in the areas of
surveillance, communications, command and control, inteligence, reliability
science, electro-magnetic technology, photonics, signal processing, and
computational science.

The thrust areas of technical competence include: Surveillance,
Communications, Command and Control, Intelligence, Signal Processing,
Computer Science and Technoiogy, Electromagnetic Technology,
Photonics and Reliability Sciences.




